463 research outputs found

    Observation of the Quantum Zeno and Anti-Zeno effects in an unstable system

    Full text link
    We report the first observation of the Quantum Zeno and Anti-Zeno effects in an unstable system. Cold sodium atoms are trapped in a far-detuned standing wave of light that is accelerated for a controlled duration. For a large acceleration the atoms can escape the trapping potential via tunneling. Initially the number of trapped atoms shows strong non-exponential decay features, evolving into the characteristic exponential decay behavior. We repeatedly measure the number of atoms remaining trapped during the initial period of non-exponential decay. Depending on the frequency of measurements we observe a decay that is suppressed or enhanced as compared to the unperturbed system.Comment: 4 pages, 5 figures, submitted to PR

    Lattice Interferometer for Ultra-Cold Atoms

    Full text link
    We demonstrate an atomic interferometer based on ultra-cold atoms released from an optical lattice. This technique yields a large improvement in signal to noise over a related interferometer previously demonstrated. The interferometer involves diffraction of the atoms using a pulsed optical lattice. For short pulses a simple analytical theory predicts the expected signal. We investigate the interferometer for both short pulses and longer pulses where the analytical theory break down. Longer pulses can improve the precision and signal size. For specific pulse lengths we observe a coherent signal at times that differs greatly from what is expected from the short pulse model. The interferometric signal also reveals information about the dynamics of the atoms in the lattice. We investigate the application of the interferometer for a measurement of h/mAh/m_A that together with other well known constants constitutes a measurement of the fine structure constant

    Ellipsoidal Coulomb Crystals in a Linear Radiofrequency Trap

    Full text link
    A static quadrupole potential breaks the cylindrical symmetry of the effective potential of a linear rf trap. For a one-component fluid plasma at low temperature, the resulting equilibrium charge distribution is predicted to be an ellipsoid. We have produced laser-cooled Be+^+ ellipsoidal ion crystals and found good agreement between their shapes and the cold fluid prediction. In two-species mixtures, containing Be+^+ and sympathetically cooled ions of lower mass, a sufficiently strong static quadrupole potential produces a spatial separation of the species.Comment: 4 pages, 3 figure

    Long-lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at micrometer scale

    Get PDF
    We report on the observation of Bloch oscillations on the unprecedented time scale of severalseconds. The experiment is carried out with ultra-cold bosonic strontium-88 loaded into a vertical optical standing wave. The negligible atom-atom elastic cross section and the absence of spin makes 88^{88}Sr an almost ideal Bose gas insensitive to typical mechanisms of decoherence due to thermalization and to external stray fields. The small size enables precision measurements of forces at micrometer scale. This is a challenge in physics for studies of surfaces, Casimir effects, and searches for deviations from Newtonian gravity predicted by theories beyond the standard model

    Dynamical instability in kicked Bose-Einstein condensates: Bogoliubov resonances

    Full text link
    Bose-Einstein condensates subject to short pulses (`kicks') from standing waves of light represent a nonlinear analogue of the well-known chaos paradigm, the quantum kicked rotor. Previous studies of the onset of dynamical instability (ie exponential proliferation of non-condensate particles) suggested that the transition to instability might be associated with a transition to chaos. Here we conclude instead that instability is due to resonant driving of Bogoliubov modes. We investigate the excitation of Bogoliubov modes for both the quantum kicked rotor (QKR) and a variant, the double kicked rotor (QKR-2). We present an analytical model, valid in the limit of weak impulses which correctly gives the scaling properties of the resonances and yields good agreement with mean-field numerics.Comment: 8 page

    Experimental Study of the Role of Atomic Interactions on Quantum Transport

    Full text link
    We report an experimental study of quantum transport for atoms confined in a periodic potential and compare between thermal and BEC initial conditions. We observe ballistic transport for all values of well depth and initial conditions, and the measured expansion velocity for thermal atoms is in excellent agreement with a single-particle model. For weak wells, the expansion of the BEC is also in excellent agreement with single-particle theory, using an effective temperature. We observe a crossover to a new regime for the BEC case as the well depth is increased, indicating the importance of interactions on quantum transport.Comment: 4 pages, 3 figure

    Doubly excited ferromagnetic spin-chain as a pair of coupled kicked rotors

    Full text link
    We show that the dynamics of a doubly-excited 1D Heisenberg ferromagnetic chain, subject to short pulses from a parabolic magnetic field may be analyzed as a pair of quantum kicked rotors. By focusing on the two-magnon dynamics in the kicked XXZ model we investigate how the anisotropy parameter - which controls the strength of the magnon-magnon interaction - changes the nature of the coupling between the two "image" coupled Kicked Rotors. We investigate quantum state transfer possibilities and show that one may control whether the spin excitations are transmitted together, or separate from each other.Comment: 8 pages, 4 figures; extended appendix and corrected typo
    • …
    corecore